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ON QUADRATIC PROGRAMS WITH A SINGLE EQUALITY CONSTRAINT

Jong-Shi Pang

Abstract. This paper shows that an alogrithm developed by the

author in an earlier paper for solving singly constrained
quadratic programs 1is polynomially bounded in the number of
variables of the program if the objective function has non-
positive mixed second derivatives.

Key Words. Quadratic program, polynomially bounded, algorithm,
decomposition, parametric linear complementarity.
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1. Introduction

Recently, there have been several papers dealing with convex
quadratic programs having only upper and lower bounds on the
variables and one single equality constraint ([7, 9, 18, 11, 15].
Quadratic programs of this kind have applications in many
different areas; see the cited papers for references. In these
papers, a common and rather interesting §pproach was suggested
for the solution of such quadratic programs. The approach can be
briefly outlined as follows. In the Karush-Kuhn-Tucker opti-
mality conditions of a given program, the Lagrange multiplier
associated with the equality constraint is treated as a parameter
and not as a wvariable of the problem. Then, ignoring the
equality constraint, the remaining conditions constitute a
parametric linear complementarity problenm. From parametric
linear complementarity theory, it is known that th= solution %o
the resulting complementarity problem is a piecewise linear
function of the parameter. The problem of solving the original
program therefore reduces to finding a suitable value of the
parameter for which the corresponding solution to the
(parametric) 1linear complementarity problem also satisfies the
outstanding equality constraint. Incidentally, this approach may

be considered as a special application of the decomposition

principle for general convex programs described in Rockafellar
(18].

In (7, 9, 16, 1ll1l], by taking advantage of some special
properties of the objective function (separability, e.g.), the

resulting parametric 1linear complementarity problem (and
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therefore the original quadratic program) can be solved extremely
easily. In fact, as pointed out in (11}, the total amount of
computational effort (i.e., additions, multiplications and
comparisons) required in the separable case is bounded above by a
low-degree polynomial in the size of the given program.

Based on the technique of parametric principal pivoting and
the decomposition approach mentioned above, the author [15] has
developed a general algorithm for solving the single constrained

strictly convex quadratic program

T

minimize qTx + %xTQx subject to c¢c'x =d and @ S x

[ [7aN

a (1)

where the matrix Q is symmetric positive definite, the vectors a
and ¢ and the scalar 4 are all positive. Our purpose in this
paper is to show that the cited algorithm is polynomially bounded

in the order of the matrix Q if Q is a Stieltjes matrix,

i.e., if Q in addition to being symmetric positive definite has
all off-diagonal entries nonpositive, Note that a diagonal
matrix Q which yields a separable objective function is obvi-
ously Stieltjes. Some other related references for the quadratic

program (1) are (1, 4, 5, 12, 14, l6, 19].




2. The Main Result

We find it useful to briefly review the algorithm described

in {15} for solving the quadratic program (l). We may write the

{ Karush-Kuhn-Tucker optimality conditions for the program as

' u=qg+tc+Qx +y 2 2, x 2 a, ux = @ (2i)
vsa-x23, y20, viy=20 (2ii)
a = clx (2iii)

where t is the Lagrange multiplier associated with the equality
constraint (2iii). The conditions (2i) and (2ii) define a
parametric linear complementarity problem (with t as the para-
meter) to which the parametric principal pivoting algorithm ([3]

is applicable. With this latter algorithm, a solution function

e ——— e e —

X*(t) can be computed. (Several simplifications can be made in
the application of this pivoting algorithm. For instance, it can
be shown that the 2 x 2 block pivots will never take place [l2,
. 15].) The szarch for a suitable t* such that x*(t*) satis-
' fies (2iii) as well can be achieved by a simple interpolation
Q “ scheme. If the quadratic program (1) is feasible, then the exis-
i tence of t* (and therefore the success of the above procedure)

is ensured by the positive definiteness of Q.

The requirement that the vector ¢ be stricly positive is
useful in ocrder to initiate the pacametric principal pivoting

algorithm. It can be replaced by the weaker assumption that ¢

be merely nonnegative with the provision that there is a t such

that gq + tc 1is nonnegative for all ¢ £ E.
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It is well-known that the solution x*(t) is a piecewise
linear function of t. Therefore, so is f(t) = ch*(t) - d.
Basically, the interpolation step is to f£ind out which segments

of linearity of f(t) contains its zero. The search is carried

out sequentially from one segment to the next, starting from the

infinite interval [tl, ® ) where tl is the first critical

-

value of t, i.e., the first breakpoint of f£(t) from the right.
Obviously, given the value of x*(t) in a segment of linearity,
the amount of computational effort required in such interpolation
is linear.

The movement from one segment to another is accomplished by

principal pivoting. In order to show that the overall procedure

is polynomially bounded if Q 1is a Stieltjes matrix, it suffices
to prove that the number of necessary pivots is polynomially
bounded. As a matter of fact, we show that this number is at
most 2n where n is the order of Q. The first step to estab-
lish this assertion is to note that each pivot changes the status
of an x-variable in four possible ways: (i) from nonbasic at
lower bound to basic, (ii) from basic to nonbasic at upper bound,
(iii) from nonbasic at upper bound back to basic, and (iv) from

basic back to nonbasic at lower bound. Note that it is not

! possible to change directly from nonbasic at either bound to

[

nonbasic at the other bound. Such a change requires two pivots.

The following theorem provides the key to establish to desired

— -—

polynomial boundedness.
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Theorem. Let Q be a Stieltjes matrix. Then in the application
of the paramestric priacipal pivoiing At oritha Lo 3)>lve W2
parametric linear complementarity problem defined by (2i) 2an1
(2ii), each pivot must correspond to either the change of a
nonbasic x-variable at lower bound becoming basic or that of a
basic x-variable becoming nonbasic at uppsr bound. )
Althernatively stated, the theorem says that if an x-
variable has become basic, it can never become nonbasic at zero
again, and if an x-variable has c2ached its upper bound, it will
stay ther2 through termination of the algorithm. If not for the
degenerate pivots, the theorem can be proved easily by observing
the fact that the solution x*(t) 1is a nondecreasing functon of
t. This latter fact follows from a least-element characteriza-
tion of x*(t) {14]. Ta what follows, we give a direct drdo0f of

the thaoram.

Proof of Theorem. Let I and I, be the index sets of the x-
variables that are currently basic and nonbasic at upper bounds,
respectively. Let J be the complement of I1 union Iz. Con-
sider the canonical system of the parametric linear complemen-

tarity problem (defined by (2i) and (2ii)) with respect to these

" index sets. In the system, the constant and parametric vectors

are given by
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1
] | | ] | |
| Basic | | Constant | Parametric | |
|Variables| | Column | Column (t) | :
| | | | |
X q c
I 5 L
y q c
Iy I, I
u q ¢
J = J - _J Nonbasic Portion
v a, - g -c
I L I
A aJ "]
b4 a ]
I I
where
(@ » 8 ) = =@ ;) TMay +0Q; g a; . cp)
1 1 171 1 172 °2 1
(@; » Sy ) == (g; +0Q a, » ¢y ) = Q (@; + C7 )
12 12 I2 IZIZ Iz I2 Ile I1 I1

(37, Cq) = (97 + Qq; @ c.) + Q.r (q cr ).
J J J J12 12’ J JI1 Il' .Il

To determine the next pivot, the following ratio test is per-

formed,
max{max{-qi/ci:ci > 8}, max{(ai-qi)/ci:l in Il' CH < 8}}.

If k is a maximizing index, then depending on where k comes

from, a simple principal pivot is performed.
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since c, 2 0 by assumption and since Q has a non-
I1 IlIl
negative inverse [8], it follows that EI = -(QI 1 )-ch s 8.
1 171 1

Therefore, we have

- - <

c = -C - Q c =0

I, I, "L

< 9. Consequently, the maximizing index K

because Q‘Ile
belongs to either J or Il and the next pivot can occur only at
either a uj-row or a vI -row. If k is in J, then the
corresponding x, -variable is becoming basic; whereas if k is in
Il’ then xk is reachiing its upper bound. Since a pivot will
never occur at a x or a y; -~row, we have established the

L 2
theorem.

If we let I and I, be the index sets as defined in the
above proof, then after each pivot, either an index k 1is trans-
ferred from I1 to Iz, in which c¢ase the cardinality of Il
decreases by 1 and that of Il union I, remains unchanged; or
else an index k not in I and I, is added to Iy, in which
case the cardinality of I1 {(and Il union Iz) increases by 1.
Since n is the number of x-variables, it follows that after at
most 2n pivots, the algorithm must terminate. This completes the
proof of our claim that the solution procedure described above
for solving the quadratic program (1) is polynomially bounded if
Q is a Stieltjes matrix. Finally, since we base our argument on
a monotonicity property of index sets, the proof is valid under

absolutely no nondegeneracy assumption.
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3. Some Concluding Remarks

There have been several recent papers (see [2] and refer-
ences therein) demonstrating how Khachian's ellipsoidal algorithm
for linear programming [13] can be extended to solve general
convex quadratic programs. Although such ellipsoidal algorithms
are polynomially bounded, computational experience [6] have shown
clearly that they are at their present stage, far from being
competitive with some pivoting methods for solving practical
problems of considerable size.

The algorithm discussed in the last section 1is of an
entirely different category. On the one hand, computational
experience (17] has shown that the algorithm performs fairly well
on large problems. On the other hand, by some simple operation
count, one can show easily that the total computational effort
required is at most of the order n4. This is significantly less

than that required by the ellipsoidal algorithms.
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